### Reproduced by AIR DOCUMENTS DIVISION

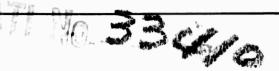


HEADQUARTERS AIR MATERIEL COMMAND

WRIGHT FIELD, DAYTON, OHIO

## the U.S. GOVERNMENT

IS ABSOLVED


FROM ANY LITIGATION WHICH MAY

ENSUE FROM THE CONTRACTORS IN -

FRINGING ON THE FOREIGN PATENT

RIGHTS WHICH MAY BE INVOLVED.

# 



### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

### WARTIME REPORT

ORIGINALLY ISSUED
March 1945 as
Memorandum Report L5C10

FLIGHT TESTS OF THE SIKORSKY HNS-1 (ARMY YR-4B) HELICOPTER

I - EXPERIMENTAL DATA ON LEVEL-FLIGHT PERFORMANCE

WITH ORIGINAL ROTOR BLADES

By F. B. Gustafson

Langley Memorial Aeronautical Laboratory
Langley Field, Va.



### WASHINGTON

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

MR No. 15010

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

### MENORANDUM REFORT

for the

Army Air Forces, Air Technical Service Command

and the

Bureau of Aeronautics, Navy Department
FLIGHT TESTS OF THE STEORSKY BNS-1 (ARMY YR-4B) HELICOPTER

T - EXPERIMENTAL DATA ON LEVEL-FLIGHT PERFORMANCE

WITH ORIGINAL BOTOR BLADES

By F. B. Gustefson

### SUMMARY

Results of performance measurements made in level flight with the HNS-1 (Army YR-4R) belicopter are presented. These data include torquemeter measurements of shaft power for both the main rotor and the tail rotor. The power data, in conjunction with full-scale-tunnel data on the lift and drag of the fuselage, are used to calculate the drag-lift ratio for the main rotor.

The following results were obtained for the HMS-1 helicopter, as tested at a gross weight of approximately 2560 counds and equipped with the original set of mainrotor blades: minimum main-rotor-shaft power at cruising rpm, approximately 99 horsepower at a speed of 40 miles per hour; rotor-shaft power absorbed by tail rotor at cruising rpm, approximately 3 to h horsepower over a range of speeds from 25 to 80 miles per hour; maximum ratio of lift to drag for the main rotor attainable within the available speed range, 6.7; maximum value of weightdrag ratio (ratio of weight to the drag equivalent to the total rotor-shaft power), 3.5; speed for maximum weight-drag ratio, approximately 67 miles per hour. The results also indicate that main-rotor-shaft power required is appreciably affected by rctor rpm, a reduction in rpm of 5 percent corresponding to a reduction of approximately 3 to 1: horsepower when operating at or near the speed for minimum power.

### INTRODUCTION

In order to provide data with which theory and wind-tunnel measurements on powered rotating-airfoil systems may be checked, flight tests are being conducted at Langley Laboratory with a Sikorsky HNS-1 (Army YE-12) helicopter. These tests include performance measurements in level flight, hovering, and glides and climbs, and camera observations of blade motion in selected conditions. This report presents the results of the level-flight performance measurements that were made with the original set of main-rotor blades.

### SYMBOLS

 $V_c$  calibrated sirspeed (indicated airspeed corrected for instrument and installation errors; can be considered equal to  $V\left(\frac{\rho}{\epsilon_0}\right)^{1/2}$  in the present case)

V true alrapsed

F mass density of air

conditions (0.002578 slug per foot)

9 average main rotor-blade pitch, uncorrected for play in linkage and for mean blade twist

 $\mu$  tip-speed ratio  $\left(\frac{V\cos\alpha}{QR}\right)$ 

a spindle angle of an equivalent rotor with no periodic variation of the rotor-blade pitch angle, measured in the plane of symmetry and referenced to a line perpendicular to the flight path; positive aft

solidity  $\frac{bc_e}{\pi R}$  where  $c_e = equivalent chord = <math>\frac{\int_0^R cr^2 dr}{\int_0^R r^2 dr}$ 

giving  $\sigma = 0.060$  for the present case

- b number of blades
- a slope of lift coefficient against section angle of attack (radian measure), assumed equal to 5.73 in this report
- Op newer coefficient (Rotor-shaft power input)
- P/L shaft-power parameter. The symbol P is equal to the rotor-shaft power divided by the volocity along the flight path. It is, therafore, also equal to the drag force that could be overcome by the shaft power at the flight velocity
- ar fuselage angle of attack (angle between relative wind and a line in the plane of symmetry and parpendicular to the main rotor-shaft axis; nositive when nose up)
- Δα<sub>f</sub> correction to fuselage angle of attach to allow for rotor downwash
- $\alpha_{\mathbf{f_c}}$  corrected tuselage angle of attack ( $\alpha_{\mathbf{f}} + \Delta \alpha_{\mathbf{f}}$ )
- AUL correction to rotor lift coefficient for fuselage download
- G<sub>L</sub> rotor lift coefficient (G<sub>Luncor</sub> + AG<sub>I</sub>)
- $G_{\text{m}}$  thrust coefficient  $\left(\frac{\text{corrected rotor lift}}{\rho\Omega^2 \pi R^4}\right)$
- $\left(\frac{D}{L}\right)_{pf}$  parasite drag of fuselage, rotor head, and blade shanks, divided by corrected main-rotor lift

Ω

| $\left(\frac{\mathrm{D}}{\mathrm{L}}\right)_{\mathrm{pt}}$ | parasite-drag contribution of teil rotor divided by corrected main-rotor lift                                                     |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| $\left(\frac{\mathbf{D}}{\mathbf{L}}\right)_{\mathbf{r}}$  | drag-lift ratio of main rotor after applying corrections for fuselage download and for fuselage and auxiliary rotor paresite drag |
| $\mathbf{c_{L_f}}$                                         | fuselege lift coefficient $\left(\frac{\text{Fuselage lift}}{\frac{1}{2}\rho V^2 \pi R^2}\right)$                                 |
| $\mathtt{c}_{\mathtt{D}_{\mathbf{f}}}$                     | fuselage drag coefficient $\left(\frac{\text{Fuselage drag}}{\frac{1}{2}\rho V^2 \pi R^2}\right)$                                 |
| R                                                          | rotor-blade radius                                                                                                                |
| r                                                          | radius of blade alement                                                                                                           |

### APPARATUS

rotor angular velocity, radians per second

corrected rotor lift

Description of aircraft. - General views of the HNS-1 helicopter (AAF Serial No. 43-28229) are shown in figures 1, 2, and 3. The plan form of the main- and tail-rotor blades is shown in figure 4. Dimensions and other details for the aircraft as flown are as follows:

| General characteristics:                     |      |
|----------------------------------------------|------|
| Gross weight as flown (±2 percent), lb       | 2560 |
| Disk loading, lb/sq ft                       | 2.26 |
| Power loading as flown (normal rated power), |      |
| 1b/bhp                                       | 14.2 |
| Parasite drag area D/q, typical flight       |      |
| condition, sq ft                             |      |
| Power rating for take-off 190 bhp at 2250    | rpm  |
| Power rating, normal 180 bhp at 2100         | rpm  |
| Gear ratio, engine to main rotor 9.          |      |
| Gear ratio, engine to tail rotor             | 0:17 |
| Fuel capacity, gals                          | 30   |
| Center-of-gravity position, below plane      |      |
| of flapping hinges, feet                     | 4.5  |

| Main-rotor characteristics.                                |           |
|------------------------------------------------------------|-----------|
| Redius, ft                                                 |           |
| TABLE AND              |           |
| Alada twist None                                           |           |
| Selidity, $\frac{-e}{}$                                    | 1         |
| πR                                                         |           |
| Hlade area (total. three blades), so ft 65.5               | )         |
| Plade section NACA 0012                                    |           |
| Plade section                                              |           |
| Coalie witch werde chtained from                           |           |
| Lorgitudinal stick rotion, deg 16                          | ;         |
| Lateral stick motion, deg                                  | ,         |
| Direction of rotation: counterclockwise as viewed from     | m         |
| abova                                                      |           |
| Moment of inertia of blode about flapping axis,            |           |
| slug ft <sup>2</sup> · · · · · · · · · · · · · · · · · · · | 5         |
| slug ft                                                    | ,         |
| Blade center of gravity, from & of rotor shaft, in. 94.3   | ,         |
| Brag hinge location, from & of rotor shaft, in 9.08        | }         |
| Flanging hinge & location, from & of rotor                 |           |
| ,                                                          |           |
| shaft in                                                   | )         |
| shaft, in                                                  | )         |
| ,                                                          | )         |
| Tail-rotor characteristics:                                |           |
| Tail-rotor characteristics:                                |           |
| Tail-rotor characteristics: Radius, ft                     | á         |
| Tail-rotor characteristics: Radius, ft                     | á         |
| Tail-rotor characteristics: Redius, ft                     | 3<br>Ο    |
| Tail-rotor characteristics:  Redius, ft                    | Θ         |
| Tail-rotor characteristics:  Redius, ft                    | Θ         |
| Tail-rotor characteristics:  Radius, ft                    | Θ         |
| Tail-rotor characteristics:  Redius, ft                    | Θ         |
| Tail-rotor characteristics:  Radius, ft                    | Θ         |
| Tail-rotor characteristics:  Redius, ft                    | 5 2 2 2 6 |
| Tail-rotor characteristics:  Radius, ft                    | 5 2 2 2 6 |

Instrumentation and methods. - Quantities measured during the forward-flight tests included the following:

Ai rspeed Fotor rpm Engine manifold pressure Attitude angle (shaft Main-rotor-shaft torque Tail-rotor-shaft torque Free-air temporature Intake-air temperature Free-air static pressure

Main-rotor pitch Tail-rotor pitch inclination) Upwash and yaw flow angles ahead of the rotor disk Cyclic pitch control position The free-sir temperature and the engine intake-sir temperature were obtained from indicating instruments; all other quantities were obtained from NACA recording instruments.

The airspeed was determined by means of a double-swiveling pitot-static installation (fig. 5) having its static holes located at a point 25% inches ahead of the main-roter shaft and 5¼ inches below the plane of the flapping hinges. The installation was calibrated by means of a trailing-pitot-static bomb suspended approximately 100 feet below the roter. The calibration data are shown in figure 6.

The engine manifold pressure, intake-air temperature, and rpm values were used to calculate engine brake horsepower by use of the calibration curve given in Technical Order AN Ol-10 DA-1.

The main- and tail-rotor-shaft torques were obtained by means of strain-gage torquemeters. The strainsensitive elements for the main rotor were mounted on the driveshaft between the gear box and the pylon thrust bearing. Those for the tail rotor were mounted on that portion of the driveshaft between the tail-rotor gear box and the rearmost shaft bearing.

The torquemeter shaft assemblies, including the strain-sensitive elements and sliprings, were designed by Baldwin-Southwark Division of the Baldwin Locomotive Works under contract with the Army Air Forces. An NACA recording galvanometer was used to measure the gage output. Voltage control and also a periodic check throughout each run on the zero reading and sensitivity of the galvanometer circuit were obtained with additional equipment developed especially for the purpose.

The values of main-rotor pitch setting and control-stick (cyclic pitch) position were obtained from control-position recorders attached to the push-pull tubes extending from inside the fuselage to the rotor head. The stick position is referred to the position for zero cyclic pitch variation. The available stick travel from this position as measured at the top of the stick is 6.3 inches forward, 7.1 inches aft, h.1 inches right, and 7.6 inches left. The amplitude of the cyclic pitch variation, in degrees from the mean pitch value, may be estimated by multiplying the stick displacement in inches by 1.25.

The phase angle of the cyclic pitch action, in degrees from the rearmost position of the blade, may be estimated for the power-on condition by assuming that the maximum effect of the longitudinal stick deflection occurs at 55° and at 245° azimuth and that the maximum effect of the lateral stick displacement occurs at 155° and 335° azimuth. These estimates must be viewed as approximate, however, because of linkage play, periodic blade twist, and the change in the phase of the control action with changes in rotor torque or rpm.

The values for the tail-rotor pitch were obtained from a control-position recorder attached to the tail-rotor control cables. This installation was calibrated with a small pitch decreasing moment applied to the blades, to insure that the play in the system (roughly ±1° from the rean position) would be taken up in a direction corresponding to that anticipated for the flight conditions covered.

The attitude angle (main-rotor-shaft inclination from the vertical, positive rearward) was determined by means of a pendulum inclinameter.

The yaw and the upwash flow angles were obtained by means of a calibrated yaw head mounted on the end of the airspeed boom (fig. 4). These tubes were located 250 inches ahead of the rotor shaft and 54 inches below the plane of the flapping hinges. The angles given are referred to a line in the plane of symmetry and perpendicular to the rotor shaft. A positive yaw angle corresponds to right yaw or left sideslip.

### REDUCTION OF DATA

The method of calculation of the majority of the coefficients presented will be appearent by definition. The methods of obtaining tip-speed ratio  $\mu$  and rotor drag-lift ratio D/L, however, require some explanation.

Tip-speed ratio  $\mu$ . Evaluation of the cos  $\alpha$  term in the accepted definition of the tip-speed ratio  $\mu = \frac{V \cos \alpha}{\Omega E}$  requires the determination of an equivalent spindle angle for a rotor with no periodic variation of the rotor-blade pitch angle. This equivalent angle was

determined by adding the amplitude of the longitudinal component of the rotor-blade cyclic pitch variation (periodic blade pitch angle change about transverse axis of ship) estimated from the stick-position data to the measured shaft angle.

Retor drag-lift ratio D/L. The evaluation of rotor drag-lift ratio requires a somewhat arbitrary division of the drag losses into fuselage parasite drag and rotor profile-drag losses. In this report the drag of the hub structure and the cylindrical blade shanks has been charged to fuselage parasite loss. This division is convenient because the drag of these items varies with forward speed rather than with rotational speed. It also gives a more correct index of the performance to be expected from later rotor designs, inasmuch as the relative drag of the hub structure on the ENS-l is obviously much greater than that on any of the rore recent designs.

In determining the drag-lift ratios of the main rotor from measured values of shaft power and known values of gross weight, allowances have been made for the following factors:

- (1) Power required to overcome the parasite drag of the fuselege, rotor head, and blade shanks.
- (2) Fower required to overcome the drag force on the tail rotor. (This power is totally independent of the power transmitted through the tail rotor shaft.)
- (3) Rotor lift, in excess of the gross weight, required because of the downward air load on the fuselage.

The individual values for all of these allowances have been included in table II in order that their magnitude may be noted.

Items (1) and (3) were determined by use of unpublished full-scale-tunnel data on the lift and drag of the fuselage of a YR-4B helicopter (AAF Serial No. 43-28225). These data were obtained with the airspeed boom shown in figure 5 mounted on the YR-4B fuselage, in order to make the data directly applicable to the flight tests. The measured drag coefficients were increased by 0.00035, or about 2 percent, as an allowance for the drag of the

cylindrical blade shanks; this increment was estimated from data on yawed cylinders. The fuselage drag and lift curves used in the analysis are shown in figure 7. The wind-tunnel values were obtained over a range of angles of attack but the fuselage was, of course, not being subjected to the downwash from the retor. As an approximate allowance for this downwash, the fuselage angle of attack for the flight conditions was taken as equal to the measured angle minus  $57.3~(\text{C}_{\text{L}}/4)$  which term represents the approximate induced flow angle at the retor.

No directly applicable data were available for evaluation of item (2). As a rational approximation, theoretical calculations similar in principle to those of the example of reference 1 were made. The process consisted in finding an airfoil-section profile-drag value which results in a calculated value of shaft power equal to the measured value. The same profiledrag value was then used to calculate the power required to pull the tail rotor. The maximum value so obtained was 3.4 horsepower; this value corresponds to maximum speed. In terms of equivalent drag area, the parasite drag allowance for the tail rotor was nearly constant, varying only from 0.8 to 1.0 square foot over the entire range of combinations of rpm and speed. The mean bladesection drag coefficient required to make the calculated tail-rotor-shaft power equal the measured shaft power varied from 0.010 to 0.015.

It will be noted that the main-rotor thrust coefficients presented are based on the assumption that rotor thrust equals rotor lift. This assumption is justified by the fact that refinement of the thrust value by inclusion of the drag component would result in a maximum difference of about 1 percent.

### RESULTS

The test data corrected for instrument errors are presented in table I. The values of the main-rotor drag-lift ratio and other parameters derived from those data are given in table II.

The power-required data for the main rotor obtained from the torquemeter are plotted against true airspeed in figure 3. Because the deviations in weight and density ratio were small, no corrections have been applied for variations of these factors from their mean values in preparing the horsepower-velocity plot. A check of the error involved indicated that the maximum correction which would be applied to an individual value for horsepower, in converting to average conditions, would be less than 2 percent. In calculating dimensionless quantities, however, individual values of weight and density were employed for each test point. The data of figure 3 have been replotted in coefficient form in figure 9. The main-rotor drag-lift ratios, obtained from the power data as already described, are shown in figure 10.

The data in figures 3, 9, and 10 have been grouped according to the values of the nondimensional thrust coefficient  $C_T$ . From an operational standpoint, the thrust coefficient is most readily changed by varying the rpm of the engine and hence of the rotor, and for this reason a value of engine rpm corresponding to each value of  $C_T$  is given. For this purpose the average of the actual  $C_T$  values within each group has been used. The conversion from  $C_T$  to rpm is based on everage values of weight and density and an average download allowance; as already mentioned, however, the variations in weight and density are not large enough to be significant in this connection, and examination of table II will show that the download variation is likewise small.

No data were taken at speeds below approximately 30 miles our hour because of the difficulty which the pilot experienced in maintaining steady conditions at speeds between approximately 30 miles per hour and near-hovering speeds.

### DISCUSSION

Main-rotor power. - Interpolation of the data presented in figure 8 indicates a minimum value of main-rotor-shaft horsepower of approximately 99 horsepower for cruising rpm (2100 engine rpm, 225 rotor rpm) at a speed of approximately 40 miles per hour. A reduction of power required of about 3 to 4 horsepower for every 5-percent reduction in rotor rpm is also indicated over

most of the speed range, including the speed for minimum power. This reduction in power required at a given speed may be attributed to the combined benefits of operating at higher pitch angles and higher tip-speed ratios while retaining fixed values of parasite and induced losses. This same trend toward lower power with lower rpm may be shown with the data in nondimensional form by plotting P/L against  $C_L$ , since the parasite and induced losses are fixed by the lift coefficient. The form of the resulting curves is believed to be more suitable for study, however, if the velocity parameter  $1/\sqrt{C_L}$  is used; such a plot is shown in figure 11. The ratio  $1/\sqrt{C_L}$  is approximately equal to the ratio of the actual velocity of flight to that for a lift coefficient of unity; the relation would be exact if  $C_L$  were based on weight instead of the rotor lift, which includes a varying percentage allowance for fuselage download.

Examination of figure 9 indicates that minimum F/L and hence maximum range will be obtained at a tip-speed ratio of approximately 0.22, which corresponds to a speed of 67 miles per hour at cruising rpm. The minimum value of P/L at cruising rpm,0.265, corresponds to an equivalent lift-drag ratio of 3.8. If the lift allowance made for the fuselage download is removed and an allowance made for the power absorbed through the tail-rotor shaft, an equivalent weight-drag ratio of 3.5 is obtained for the aircraft. The values of minimum P/L for the various thrust coefficients (see faired curves of fig. 11) show relatively little effect of rotational speed; in particular, the reduction in P/L obtained by using rotational speeds below that for cruising is small. The ratios just given for the cruising condition, therefore, are considered to be reasonably representative of the performance of the aircraft as tested.

The minimum value of main rotor D/L (fig. 10) is 0.15, corresponding to an L/D of 6.7. This value was obtained from data taken with wide-open throttle. Inspection of the data of figure 10 indicates that appreciably higher rotor L/D values might be expected if higher tip-speed ratios could be reached. The extension of the tip-speed ratio values by use of lower rotational speed, however, was carried to the lowest rotational speed at which the pilot could control the aircraft. Calculations indicate that tip stalling should set in at approximately this same combination of thrust coefficient and tip-speed ratio values; consequently,

further increase in tip-speed ratio and L/D would have to be obtained by an increase in forward speed rather than by reduction of rotational speed.

Tail-rotor-shaft power. Inspection of the values of the tail-rotor power given in table I will indicate that for speeds between 25 and 80 miles per hour the tail rotor absorbs from 3 to 4 shaft horsepower at normal rpm. These data are shown plotted against velocity, with the data points grouped according to main-rotor thrust coefficient, in figure 12. Some effect of speed is evident, the tendency being a decrease in shaft power with increase in speed. There are also indications of an effect of tail-rotor rpm on shaft power; this effect is most consistently evidenced in the top-speed data (70 to 30 miles per hour, flight 9), which data indicate a reduction from about 3.5 horsepower to about 2 horsepower as the engine rpm is reduced from 2250 to 1940.

Analysis indicates that the shaft power absorbed by the tail rotor will vary with the yaw angle of the helicopter. To evaluate this effect a continuous record was taken at 70 miles per hour with the yaw angle slowly increased and decreased through a range of ±15°. A change of one horsepower in the tail-rotor-shaft power for every 3.5° yaw was indicated, the lower shaft power corresponding to right yaw or left sideslip. Inspection of the yaw angle values given in table I in the light of this relation indicates that the maximum error in tail-rotor-shaft power, resulting from yaw of the aircraft, is approximately 0.5 horsepower.

The power absorbed by the drag of the tail rotor has already been discussed in the section entitled Reduction of Data.

### CONCLUSIONS

The level-flight performance data obtained on the HNS-1 helicopter, as tested at a gross weight of approximately 2560 pounds and equipped with the original set of main-rotor blades, indicates the following conclusions.

1. The minimum shaft power required by the main rotor at cruising rpm (225 rotor rpm, 2100 engine rpm) was approximately 99 horsepower at a speed of 40 miles per hour.

- 2. The shaft power absorbed by the tail rotor at cruising ron was approximately 3 to 4 horsepower over a range of speeds from 25 to 80 miles per hour.
- 3. A reduction of 5 percent in rotor rpm results in a reduction of approximately 3 to 4 horsepower in the value of main-rotor-shaft power, at or near the speed for minimum power.
- 4. The maximum lift-drag ratio for the main rotor was approximately 6.7. A higher L/D could probably be obtained if higher speeds could be reached.
- 5. A maximum value of weight-drag ratio (ratio of weight to the drag equivalent of the total rotor-shaft power) of 3.5 was obtained at a speed of approximately 57 miles per hour.

Langley Hemorial Advisory Committee for Aeronautics
Langley Field, Va.

### REFERENCE

1. Bailey, F. J., Jr., and Gustafson, F. B.: Charts for Fstimation of the Characteristics of a Helicopter Fotor in Forward Flight. I - Profile Drag-Lift Ratio for Untwisted Rectangular Blades. NACA ACR No. 14507, 1944.

TABLE I

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

LEVEL PLICHT DATA SURGARY

|                                                                              |                                                                                          | T                                             | Flight Bo          | 4                        |                            |            | 6730                             | *                                |                   |                      |            |                    |                                                              |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------|--------------------------|----------------------------|------------|----------------------------------|----------------------------------|-------------------|----------------------|------------|--------------------|--------------------------------------------------------------|
| Fun no.                                                                      | 7                                                                                        | 8                                             |                    | 4                        | 80                         |            | 4                                | •                                |                   | 9                    |            | ឌ                  | ង                                                            |
| Calibrated airspeed (mph) Density ratio, $\rho/\rho_0$ True speed (mph)      | 65.6<br>.913<br>68.6                                                                     | 60.6<br>.915<br>63.3                          |                    | 5.6.7<br>816.1           | 37.3<br>38.8               |            | 35.2<br>85.2<br>8.2              | .923<br>42.0                     |                   | 41.3<br>2015<br>43.1 |            | .919<br>50.8       | .920<br>50.8                                                 |
| Gross weight (1bs)<br>Rotor rpm<br>Engine rpm                                | 8 8 8<br>8 8 8                                                                           | 25,27,20,20,20,20,20,20,20,20,20,20,20,20,20, |                    | 252<br>2070              | 223<br>223<br>20 <b>60</b> |            | 22 22 28<br>22 23 28<br>23 23 28 | 25.73<br>20.20<br>20.20<br>20.20 |                   | 2572 235 2390        |            | 236<br>238<br>2220 | 1863<br>1863<br>1863<br>1863<br>1863<br>1863<br>1863<br>1863 |
| Atmos, pressure (in. Hg) Free air temp. $^{(OF)}$ Intake air temp. $^{(OF)}$ | 738.71                                                                                   | 3.F I                                         |                    | 73.38                    | 8.E I                      |            | k<br>148                         | 3<br>1 3 %                       |                   | 14%                  |            | 138.5              | 8.E.1                                                        |
| 1. Hg)                                                                       | 2.63<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26 | 25.52<br>22.52                                | 23.0<br>110        | 138<br>138<br>138<br>138 | 322                        | រុង<br>វង្ | 22.<br>132<br>162                | 2,72 %                           | 2 %<br>2 %<br>2 % | 22.6<br>105<br>105   | 445<br>445 | ÉRS<br>ÉRS         | នូងន                                                         |
|                                                                              | 181                                                                                      | 1%.                                           |                    |                          | 25.5                       |            | 1.2.2.                           | 127                              |                   | 155                  |            | 7 2 8              | 1%4                                                          |
| Yaw angle (deg)<br>Shaft inclination (deg)<br>c.g. (in. behind shaft)        | 4.6.3.                                                                                   | 25°5°                                         |                    | 4.6.<br>7.7.             | 197                        | 375        | 344                              | 94.<br>8.                        |                   | 51.4 e.              | 25° 0.     | 9.6.               | <br>                                                         |
|                                                                              | 5.6<br>4.3                                                                               | 81.4<br>6.8.4<br>,                            | -3.8<br>1.9<br>3.4 | 777                      | 1.3                        |            | 2.9<br>3.5                       | -1.2<br>1.6<br>3.2               |                   | -2.5<br>3.0          |            | -2.1<br>1.1<br>2.8 | 3,27                                                         |

TABLE I (cont.) LEVEL FLIGHT DATA SUMMARY

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

28.15 1.25 8228 45.55 50.55 50.55 828 1 444 3.4 8.3 0.3 25.15 72.15 1.61 8.2 8.3 8 1 1 1 1 2.03.1 28.26 8.9% 5.0% **8228** 28.29 3.53 EZZ Z SES 3.4 28.28 28.28 28.28 28.28 28.28 RKS 7/5/11 28.33 2576 z K 28,33 69 :-45.0 .930 46.7 85.38 88 88 88 88 88 88 46.6 48.3 48.3 ម្ពុជម្ព 8. X 25.53 25.53 25.53 45.1 .927 46.8 EK'S 4.6 Flicht Io. 28.23 69 8228 8228 **883** 238 res 44. 8.10 Manifold pressure (in. Hg) Brake hp (power charts) Upwash at A.S. head (deg) Stick position (in. fwd.) Stick position (in. left) Calibrated airspeed (mph)
Density ratio, P/Po
True speed (mph) Atmos. pressure (in. Hg) Free sir temp. (OF) Yaw angle (deg) Shaft inclination (deg) c.g. (in. behind shaft) Hp, tail rotor (shaft) Pitch, main rotor (deg) Pitch, tail rotor (deg) Hp, main rotor (shaft) Intake air temp. (OF) Gross weight (1bs) Run no. Engine rpm Fotor rpm

TABLE E (cont.)

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

LEVEL PLICHT DATA SURLARY

Flight No. 4 (sent.)

| 27      | 31.1<br>.911<br>32.6                                                    | 2546<br>207<br>1930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.32                                                                                  | *<br>£<br>£                                                                     | 3.6<br>9.3<br>1.5                              | 5077<br>7179                                                          | 377                                                                                 |
|---------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 11      | 31.2<br>.914<br>32.6                                                    | 87.78<br>7.78<br>7.78<br>7.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 86 :<br>8                                                                              | ន្តអន្ត                                                                         | 3.7                                            | 11.0                                                                  | 2.7                                                                                 |
| 4       | 31.1<br>.921<br>32.4                                                    | 2552<br>237<br>2210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>8</b> 6 :                                                                           | 87.8<br>12.6                                                                    | 7.5                                            | 6644                                                                  | 227                                                                                 |
| 23      | 31.2<br>.920<br>32.5                                                    | 25.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25<br>26.25 | 8.27<br>8.20                                                                           | 888<br>888                                                                      | 3.4<br>8.1<br>1.9                              | 46.4                                                                  | 2.9                                                                                 |
| *       | 50.1<br>.919<br>52.2                                                    | 22.23<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.15<br>1.15                                                                           | 823<br>4.43                                                                     | 25.<br>44.<br>1.                               | 1.4.1.<br>1.8.0.1.                                                    | 450                                                                                 |
| Run no. | Calibrated airspeed (mph) Density ratio, $\rho/\rho_0$ True speed (mph) | Gross weight (lbs)<br>Rotor rpm<br>Engine rpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Atmos, pressure (in. Hg)<br>Free air temp. $({}^{O}F)$<br>Intake air temp. $({}^{O}F)$ | Manifold pressure (in. Hg)<br>Brake hp (power charts)<br>Hp, main rotor (shaft) | Hp, tail rotor (shaft) Pitch, main rotor (deg) | Yaw angle (deg)<br>Shaft inclination (deg)<br>c.g. (in. behind shaft) | Upwash at A.S. head (deg)<br>Stick position (in. fwd.)<br>Stick position (in. left) |

### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICE

TARE I (cont.)

LEVEL PLICHT DATA SURVANT

|                                                                                                    |              |                      | Flisht No. 5 | . 5                  |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7/2                                                                                     | 7/25/14                          |                      |  |
|----------------------------------------------------------------------------------------------------|--------------|----------------------|--------------|----------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------|----------------------|--|
| Run no.                                                                                            | -            | ~                    | •            | 4                    | 8                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80                                                                                      | 6                                | 9                    |  |
| Calibrated airspeed (mph) Density ratio, $\rho/\rho_0$ True speed (mph)                            | 7.5<br>216.  | 60.4<br>.915<br>63.1 | .915<br>51.4 | 42.0<br>426.<br>43.9 | 32.2<br>.916<br>33.6                                               | 33.6<br>.919<br>35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36.4<br>38.0                                                                            | 51.4<br>.918<br>53.6             | 65.1<br>.916<br>68.0 |  |
| Gross weight (lbs)<br>Fotor rpm<br>Engine rpm                                                      | 253          | 8833<br>8833         | 225          | 2527<br>225<br>2100  | 227<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 | 25.50<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00 | 233<br>233<br>236<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237 | 2515<br>225<br>220<br>220<br>220 | 2512<br>223<br>2030  |  |
| Atmos. pressure (in. Hg) Free air temp. ${}^{({}^{\circ}F)}$ Intake air temp. ${}^{({}^{\circ}F)}$ | <b>333</b> 1 | 831<br>3             | 28.7<br>1.72 | 28.72<br>53.6<br>    | 88.65<br>83.0<br>1                                                 | 88.1<br>5.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.8<br>8.6<br>8.0                                                                       | 8.3<br>8.9                       | 28.7<br>24.6         |  |
| Manifold pressure (in. Hg)<br>Brake hp (power charts)<br>Hp, main rotor (shaft)                    | £83          | 25.03<br>25.03       | 322<br>8     | 428<br>428<br>4      | ដូងដ                                                               | 25.7<br>103<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2<br>2<br>2<br>2<br>3<br>3<br>3                                                         | ន្តង្កង                          | 25.8<br>136<br>130   |  |
| Hp, tail rotor (shaft)<br>Fitch, main rotor (deg)<br>Fitch, tail rotor (deg)                       | 2.5<br>10.3  | 9.1                  | 1221         | 4.2<br>8.1<br>.6     | 8.2                                                                | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.7<br>5.8                                                                              | 0.4.<br>7.4.                     | 3.3                  |  |
| Yaw angle (deg) Shaft inclination (deg) c.g. (in. behind shaft)                                    |              | 4:5-<br>-5:2         |              | 6.5.                 | e: 1 e:                                                            | 0.0<br>-1.0<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6<br>-1.7<br>8                                                                        | 9,10                             | 0.0                  |  |
| Upwash at A.S. head (deg)<br>Stick position (in. fwd.)<br>Stick position (in. left)                | -5.8<br>4.3  | -4.0<br>1.8<br>3.5   | 3.0          | -1.5<br>1.4<br>2.9   | 717                                                                | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.3<br>3.0                                                                              | -4.0<br>1.5<br>3.2               | 3.9                  |  |

COMMITTEE FOR AERONAUTICS

THE I (out.)

LEVEL PLICE DATA SURVANT

TABLE I (cont.)

LEVEL FLIGHT DATA SUMMARY

Plicht No. 9 (sont.)

COMMITTEE FOR AERONAUTIGS

2,4 % 8 121 KKK 24.8 24.8 3gg 6.4 6.5 6.3 2228 3.2 10.2 0.8 2,68 2 ដ្ឋនិង្គិ EE's 2.3 8.8 8 282 282 282 282 នូងដ -2.1 -2.3 8.43 8.63 62.8 .940 64.7 2 2 2 3 3 3 S 0.4.4 2.8.4 6.60 78.5 100 68.3 2935 6.6 ន្តន្តន្តិ 428 2 0 & 4 4 24.8 100 100 100 68.6 .933 7.0 2222 428 83.83 80.03 8228 2.7 ZES. 484 82 83 80 83 8888 8888 2.7 4.6 28.83 E 33.93 £83, 3.2 6.0 4.5 222 .931 9.00 **88.**83 8 8 8 8 8 8 £23 557 577 577 2.5 8.6 0.9 4.2 Manifold pressure (in. Hg) Brake hp (power charts) Hp, main rotor (shaft) Upwash at A.S. head (deg) Stick position (in. fwd.) Stick position (in. left) Calibrated airspeed (mph) Density ratio,  $\rho/\rho_0$  True speed (mph) Atmos. pressure (in. Hg) Free air temp.  $\binom{5}{7}$ Hp, tail rotor (shaft) Pitch, main rotor (deg) Pitch, tail rotor (deg) Yaw angle (deg) Shaft inclination (deg) c.g. (in. behind shaft) Intake air temp. (OF) Gross weight (1bs) Run no. Engine rpm Rotor rpm

| -                                          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                                              |                                 |                                            |                                                                     |                              |
|--------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------|---------------------------------|--------------------------------------------|---------------------------------------------------------------------|------------------------------|
| ( <u>1</u> )                               | 0.177<br>196<br>.209                              | .236<br>.239<br>.436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.85<br>2.85<br>2.85                                               | rigini<br>Livings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 255<br>202<br>203            | 284<br>252                                                   | 25.<br>25.<br>25.<br>25.<br>25. | ĕ¥.%                                       | 8224                                                                | 398                          |
| )<br>(1)                                   | -000.<br>-000.<br>-000.                           | 988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 888                                                                | 9888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 888                          | 988                                                          | 988                             | 982                                        | 9828                                                                | 9828                         |
| $J^{d}\left(\frac{1}{\overline{a}}\right)$ | 0.086                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 035                                                                | 5399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | इंडेड                                                        | 45.65                           |                                            | 55.55                                                               | 22.22                        |
| 메니                                         | 0.267<br>272.<br>272.                             | 25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00 | 3.5.<br>0.0.<br>0.0.<br>0.0.<br>0.0.<br>0.0.<br>0.0.<br>0.0.       | 2.0.2. v.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8,7,3<br>8,48                | 8,6,6,4<br>8,6,6,4                                           | 85.55<br>138.55                 | £. 55.55.                                  | 25.5.<br>15.8.<br>14.8.                                             | 83.7.7.<br>1.5.68            |
| ભદ                                         | 4790.0<br>9580.<br>95.00.                         | 0492<br>0426<br>0472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0491                                                               | 05050<br>05050<br>05050<br>05168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0540<br>0482<br>0550         | 0500<br>0500<br>0486                                         | 1873<br>1773<br>1782<br>1782    | 2.2.2.2.<br>2.2.2.2.2.2.2.2.2.2.2.2.2.2.2. | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0         | .0520<br>.0520<br>.0492      |
| Ср<br>× 103                                | 0<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 24.25.25.25.25.25.25.25.25.25.25.25.25.25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 255<br>184<br>184                                                | 22.<br>22.<br>22.<br>21.2.<br>81.5.<br>81.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 255<br>55<br>55<br>55<br>55  | 5,55<br>5,65<br>5,65<br>5,65<br>5,65<br>5,65<br>5,65<br>5,65 | .297<br>1217<br>255             | 88.5                                       | 4555                                                                | . 306<br>. 306<br>. 301      |
| 5 8                                        | 0.0322                                            | 0316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0327                                                              | .0278<br>.0321<br>.0270<br>.0337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .0272<br>.0314<br>.0349      | .0272<br>.0307<br>.0304                                      | .0356<br>.0268<br>.0310         | .03761<br>.03363<br>.0363                  |                                                                     | .0269<br>.0342<br>.0356      |
| ታ                                          | 0.0055<br>.0055<br>.0054                          | 0000<br>47,000<br>47,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200.<br>47.000.<br>47.000.                                         | 00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00 | 0000<br>0000<br>0000<br>0000 | .0053<br>.0053                                               | .0061<br>9460<br>659            | 90559                                      | .0053<br>.0053<br>.0053                                             | .0046<br>.0059               |
| 30                                         | 2.66<br>4.26<br>4.97                              | 5.66<br>11.00<br>17.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.52                                                               | 6.33<br>7.88<br>7.88<br>7.88<br>7.88<br>7.88<br>7.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.53                         | 7.52                                                         | 7.2<br>11.0<br>7.11             | 32.11                                      | 8.73<br>6.11<br>15.19                                               | 15.35                        |
| C.                                         | 0.221<br>.256<br>.298                             | 1.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.411.556                                                          | 22.5<br>23.5<br>27.5<br>27.9<br>27.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2000                         | 152                                                          | 1220                            | 425                                        | 425.                                                                | .9 <b>26</b><br>.918<br>.928 |
| TOP                                        | 400.0<br>400.0                                    | 988<br>488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 | 8888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>इंड</b> ड                 | 898                                                          | 988                             | 888<br>7.688                               | 888                                                                 | 888<br>888                   |
| er.                                        | 6.00 G                                            | -10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -9.7                                                               | 9.66.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.46                         | 686                                                          | 9.11                            | -10.6                                      | -13-09-7-09-8-13-8-0-7-13-8-13-13-13-13-13-13-13-13-13-13-13-13-13- | 2077<br>7777<br>7777         |
| Jog                                        | 1.5.4                                             | 464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -20.0                                                              | ٠٠٠٠<br>منه: غ-غ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 444                          | 41.4                                                         | 19.5                            | \$ 0.0<br>0.00                             | 4.52                                                                | -13.2                        |
| (CL) uncor                                 | 0.216<br>.251<br>.294                             | 1.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.399                                                              | .521<br>.578<br>.578<br>.578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 292<br>282<br>384            | 333                                                          | . 459<br>. 701                  | 619<br>667<br>669                          | 519                                                                 | .919<br>.911<br>.920         |
| 3.                                         | 0.224<br>.208<br>.190                             | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 833                                                                | 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 188                          | 4525                                                         | 118                             | 137                                        | 1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500        | .100                         |
| <b>6</b>                                   | 10.1<br>9.6                                       | 8.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 280<br>140                                                         | 1.81.0<br>v.v.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 88<br>4.46.                  | 9.6                                                          |                                 | 888                                        | 8000<br>1041                                                        | ~00<br>nini                  |
| V<br>(mph)                                 | 68.6<br>63.3<br>57.3                              | 386.<br>186.<br>186.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.2<br>12.0<br>12.0                                               | 15.05<br>500.5<br>8.05<br>8.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58.0<br>56.9<br>58.1         | 16.8<br>16.3<br>16.7                                         | 38.2                            |                                            |                                                                     | 32.5                         |
| V <sub>c</sub> (mph)                       | 55.65                                             | 27.68<br>8 4.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.03<br>5.04<br>6.04<br>6.04                                      | 1585<br>2567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55.55<br>6.56                | 1.65.1                                                       | 24.6<br>2.6.0<br>2.6.0          | 0.99                                       | 5.15                                                                | 31:1                         |
| Run                                        | HUN                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-000                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HUN                          |                                                              |                                 |                                            |                                                                     |                              |
| Plight                                     | ĸ                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                            |                                                              |                                 |                                            |                                                                     |                              |

TABLE II - Continued
ROTOR DRAG-LIFT RATIOS AND RELATED PARAMETERS
DERIVED FROM LEVEL-FLIGHT DATA

1-595

| (i)                     | 0.173<br>252<br>253      | 84.<br>75.<br>88.               | .370<br>.253<br>.187                                         | 163                        | 322                             | 445                     | न्रमुद्                                                      | 3.35.                   | .162<br>.166<br>.157                   | 131.                    | 72.55                                                              |
|-------------------------|--------------------------|---------------------------------|--------------------------------------------------------------|----------------------------|---------------------------------|-------------------------|--------------------------------------------------------------|-------------------------|----------------------------------------|-------------------------|--------------------------------------------------------------------|
| ( <u>1</u> )            | 900.00                   | 985                             | .005<br>200<br>200<br>200<br>200                             | 98.98<br>48.00             | 888<br>2523                     | <u>बुबु</u> ह           | 888                                                          | 888                     | <u> इंड</u> ंड्                        | 999                     | 8999                                                               |
| Jd (1)                  | 0.10t<br>.075<br>.055    | 650<br>622<br>622<br>622<br>622 | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00 | 411.2                      | 568<br>888                      | 961.<br>101.            | äää                                                          | 1111                    | 588                                    | 8.889<br>2893           | हुंडुंडुं<br>इंद्रुंड्ड                                            |
| 하다                      | 0.281<br>.282            | 5.33                            | . 210<br>210<br>279                                          | 1883.<br>355.              | 25.95.<br>40.05.                | 262                     | . 262<br>262<br>270                                          | . 272<br>. 267<br>. 273 | 268<br>268<br>165<br>165               | 262<br>263<br>263       | . 25.<br>25.<br>25.<br>85.5.                                       |
| કાક                     | 0.0685<br>.0574<br>.0477 | 0511<br>0511<br>0483            | 0507<br>0547<br>0629                                         | .0662<br>.0664<br>.0682    | .0685<br>.0692<br>.0684         | .0683<br>.0682<br>.0680 | .0682<br>.0667<br>.0674                                      | .0678<br>.0668<br>.0670 | 1990.<br>1990.<br>1990.<br>1990.       | .0605<br>.0602<br>.0555 | .0556<br>.0553<br>.0609<br>.0606                                   |
| с <sub>р</sub><br>× 103 | 0.352<br>.298<br>.266    | 484                             | .331<br>.331                                                 | & ES                       |                                 | 2                       | £25.5                                                        | 35.5.<br>35.5.5.        | ************************************** | 202.<br>202.<br>772.    | .276<br>.271<br>.318<br>.327                                       |
| 30<br>202               | 0.0298                   | .0299<br>.0299<br>.0294         | .0500<br>.0293<br>.0506                                      | .0262<br>.0269<br>.0365    | .0366<br>.0370<br>.0346         | .0345<br>.0320<br>.0327 | .0325<br>.0300<br>.0296                                      | .0294<br>.0280<br>.0273 | .050.<br>1050.<br>10550.               | .0290<br>.0286<br>.0290 | .0288<br>.0284<br>.0304<br>.0313                                   |
| <u>ያ</u>                | 0.0051<br>.0052<br>.0052 |                                 | .0052<br>.0051<br>.0053                                      | .001.5<br>.006.5<br>.006.3 | 888<br>848                      | .0059<br>.0055<br>.0056 | .0056<br>.0051                                               | .0051<br>.0048          | .0052<br>4500.<br>0057                 | .0050<br>.0049<br>.0050 | 9659                                                               |
| 비                       | 5.1.5<br>9.1.5<br>9.1.5  | 8.47<br>14.67<br>12.75          | 5.53                                                         | 38.7<br>2.8.5              | 388                             | 2.2.R                   | 2.16<br>2.95<br>2.95                                         | 22.2                    | 85.4                                   | 5.5.5<br>4.5.5.         | ディング<br>ディング・ディング                                                  |
| CL                      | 0.182<br>.250<br>.355    | .508<br>.886<br>.776            |                                                              | 170                        | 196                             | 196                     | .190<br>.172<br>.771                                         | .176<br>.166<br>.167    | 198<br>195                             | 230                     | 125<br>205<br>205<br>205<br>205                                    |
| 4CL                     | 7000                     | 200.00                          |                                                              | 868<br>868<br>868          | 999<br>200<br>200<br>200<br>200 | 999                     | 900.                                                         | 900.                    | 9000                                   | 999<br>988              | 9999                                                               |
| a f                     | 6.65<br>6.6-10           | 12.6                            | -11.2<br>-8.9<br>-9.5                                        | -10.7                      | 10.7<br>10.5<br>10.3            | -10.5                   | -11.6                                                        | -11.6                   | -11.8<br>-10.8                         | 10.9                    | 10.9                                                               |
| <b>7</b> 0₹             | 4. <i>i.</i> i.i.        | -7.2<br>-12.5<br>-11.0          | 3.50                                                         | 44.0<br>44.0               | 3.4.5                           | 444                     | 0.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 4.6.6                   | 46.6                                   | 444<br>8084             | 2424<br>0000                                                       |
| (CL) uncor              | 0.177<br>245<br>361      |                                 | . 233<br>. 212                                               | .165<br>.167<br>.183       | 191.                            | 181:                    | 186.                                                         | 021:<br>091:<br>191:    | 178                                    | eigi<br>Ž               | 9555<br>955<br>955<br>955<br>955<br>955<br>955<br>955<br>955<br>95 |
| 3.                      | 0.238<br>.204<br>.166    | 걸음크                             | 17.52                                                        | 25.25                      | 822                             |                         | त्रंत्र                                                      | 34.5                    | • • •                                  |                         |                                                                    |
| 9                       | 10.3<br>8.1.5            | 7.5                             | 888                                                          | 9.6<br>12.7<br>2.2         | 12.2<br>12.2<br>1.7             | 7.11                    | 201                                                          | 922                     | 10.5                                   | 9.99                    | 0.000                                                              |
| (qdm)                   | 505<br>51.7              | 35.50                           | 8 K.88                                                       | 75.0                       | 72.7                            |                         | 787                                                          |                         | 72.72<br>4.76                          | 22.7                    | 82880<br>2444                                                      |
| V <sub>c</sub> (mph)    | 71.5<br>60.5<br>19.2     | 32.2                            | 36.4<br>51.4<br>5.1.4                                        | 127.<br>14.8               | 1.27                            | 70.17                   | 427                                                          |                         |                                        | 688                     |                                                                    |
| E E                     | 125                      | -\$100                          | စ ၈ ၀                                                        | 125                        | 440                             | <b>1</b> −00 0          | 823                                                          | 1 242                   | , 275                                  | 520                     | <b>ಇಬ್</b> ತಬ                                                      |
| Flight                  | 5                        |                                 |                                                              | 6                          |                                 |                         |                                                              |                         |                                        |                         |                                                                    |

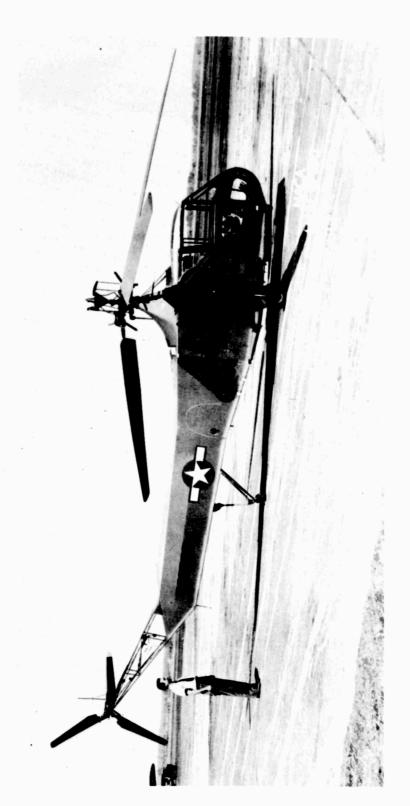



Figure 1.- HNS-1 helicopter, side view.

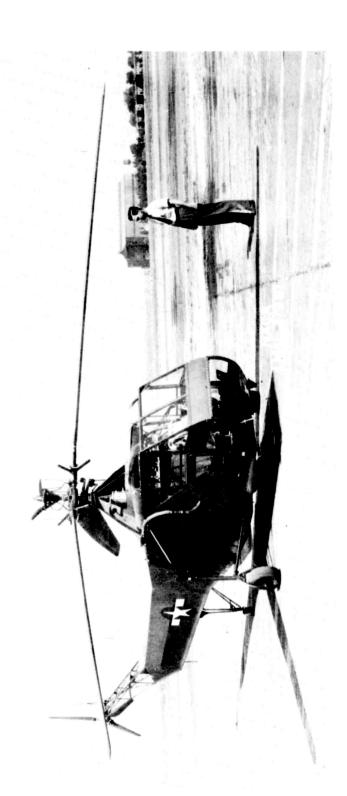



Figure 2.- HNS-1 helicopter, front three-quarter view.

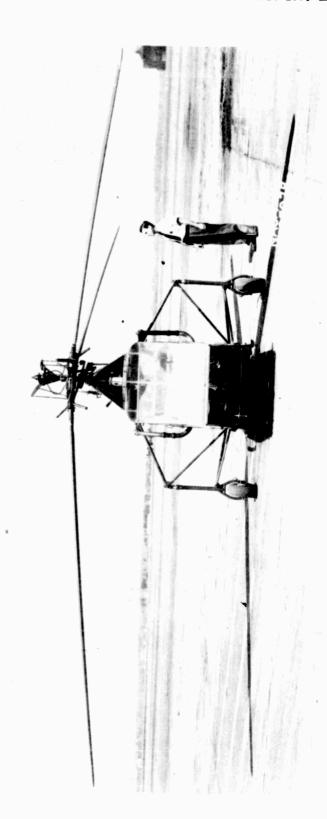



Figure 3.- HNS-1 helicopter, front view.

scale : 1" = 24"

L-595

Figure 4.- Planform dimensions of YR-4B main- and tail-rotor blades.



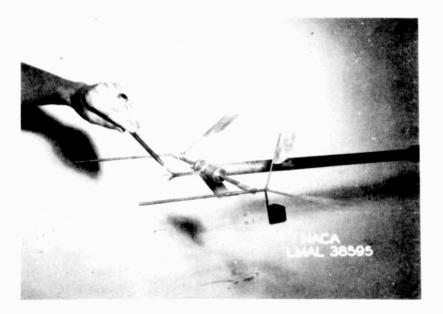
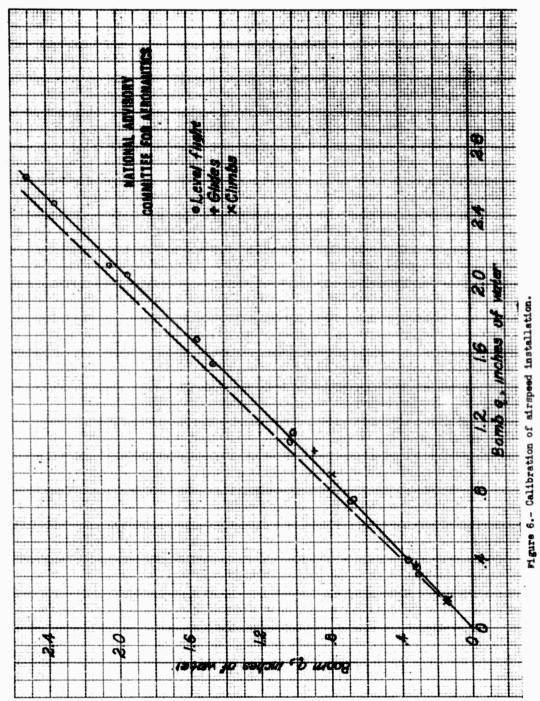




Figure 5.- Airspeed boom and details of pitot-static and flow-angle pressure-tube installations.



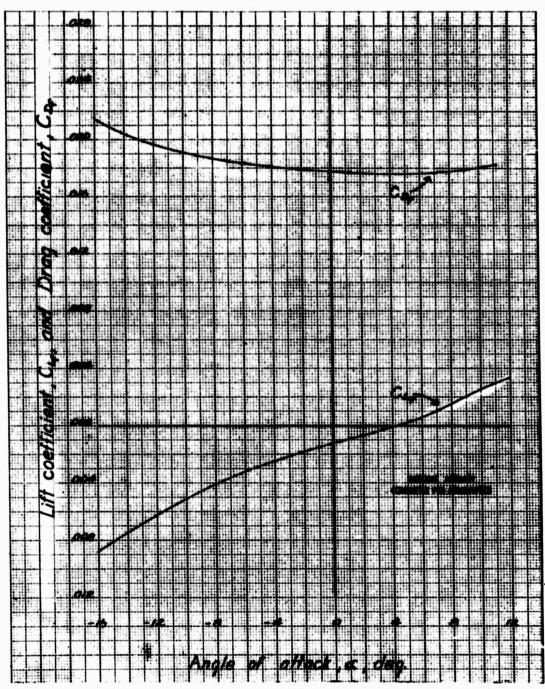
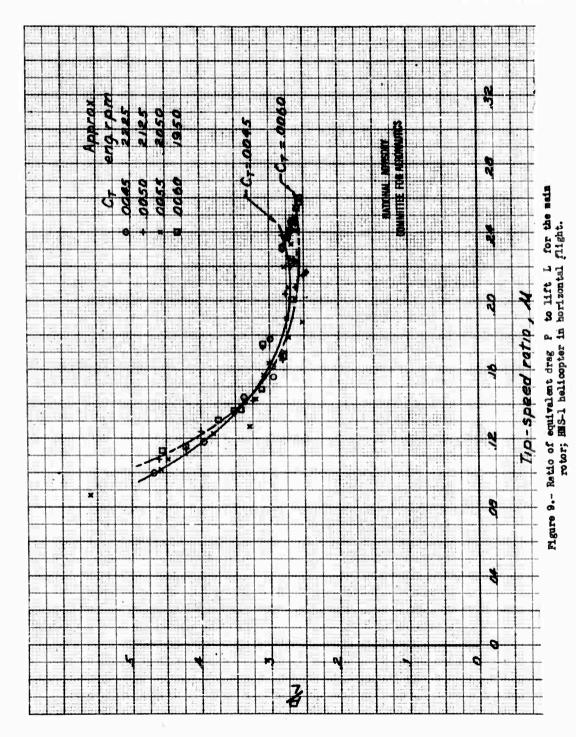




Figure 7.- Fuselage drag and lift curves as used in reduction of data;

Figure 8.- Main rotor shaft power vs. true speed for HNS-1 helicopter in level flight. Gross weight as flown, 2560 pounds  $\pm 2$  percent; density ratio  $e^{i}/e_{o}$ , .924 il.5 percent.



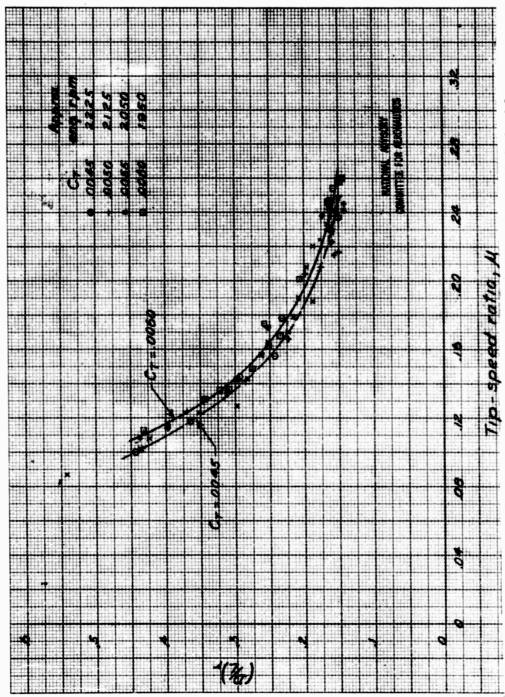



Figure 10.- Drag-lift ratio  $(L/L)_r$  for the main rotor of the HNS-1 helicopter in horizontal flight. The drag of the hub structure and the cylindrical blade shanks has been charged to fuselage parasite values.

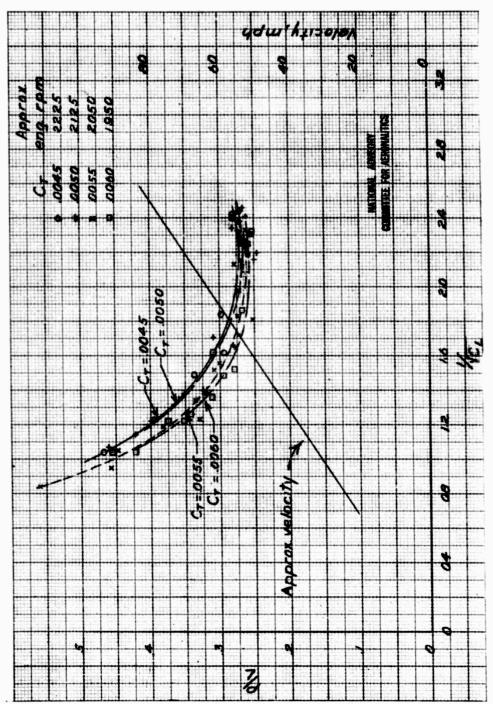



Figure 11.- Equivalent meda retor drag-lift ratio, P/L, vs. the valedity paremeter 1//01; MBS-1 helicopter in herizontal flight.

- 595

Figure 12.- Tail-rotor shaft power vs. true speed for the HNS-1 helicopter in horizontal flight.

## 

Flight Tests of the Sikorsky HNS-1 (Army YR-4B) Helicopter - I - Experimental Data on Level-Flight Performance with Original Roser Blades
Gustafson, F. B.

33410 (None)

Langley Memorial Aeronautical Lab., Langley Field, Va. National Advisory Committee for Aeronautics, Washington, D. C. MR-L51

(Same)

March 145

Unclass.

U.S.

Eng.

34

photos, tables, diagr, graphs

Level flight performance measurements were made on the YR-4B helicopter with the original set of main-rotor blades and a gross weight of approximately 2560 pounds. The minimum shaft power required by the main rotor at cruising rpm (225 rotor rpm, 2100 engine rpm) was approximately 99 hp at a speed of 40 mph. The shaft power absorbed by the tail rotor at cruising rpm was approximately 3 to 4 hp over a range of speeds from 25 to 80 mph.

Request copies of this report only from Originating Agency

Rotating Wing Aircraft (34)

Helicopters - Performance (49244);

YH-4B - Flight tests (99854.473)

AND, W. 188 NO. BC-1468 F